GoWvis: a Web App for Graph-based Text Visualization & Summarization https://safetyapp.shinyapps.io/GoWvis/ Antoine J.-P. Tixier, Konstantinos Skianis, Michalis Vazirgiannis Computer Science Laboratory, École Polytechnique, France

## Introduction

### **Graph-of-Words (GoW) fundamentals:**

- statistical approach based on the Distributional Hypothesis
- $\blacksquare$  edge between two terms if they **co-occur** within a **sliding window** of fixed size W
- encodes term dependence strength (via edge weights) and term order (via edge direction)
- enables graph theory to be applied to text
- linear in time and space (resp. O(nW), O(n + m)), for *n* nodes and *m* edges

## GoW proved highly successful:

- keyword extraction and summarization [Mihalcea & Tarau 2004, Rousseau & Vazirgiannis 2015]
- information retrieval [Rousseau & Vazirgiannis 2013]
- document classification [Malliaros & Skianis 2015, Rousseau et al. 2015]





and more...

## Motivation for GoWvis:

- GoW can be used to improve almost any NLP task...
- ...but it has many pre-processing, graph building, and graph mining parameters

# $\hookrightarrow$ there are needs to interactively explore the parameter space

detection. POS-based screening.

| I. Text pre-processing                                                                                                                                                                                                                                                                                                     | II. Graph building                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>■ Keep only nouns and adjectives? Boolean, defaults to TRUE</li> <li>■ Remove SMART stopwords? Boolean, defaults to TRUE</li> <li>■ Stemming? Boolean, defaults to TRUE. If used, tends to yield smaller and denser graphs.</li> <li>→ The surviving terms are used as the nodes of the graph-of-words</li> </ul> | <ul> <li>Window size. Integer between 2 and 12, defaults to 3. The larger the window, the denser the graph.</li> <li>Build on processed text? Boolean, defaults to TRUE. If used, tends to link more distant words and produce denser graphs.</li> <li>Overspan sentences? Boolean, defaults to TRUE. If FALSE, two words can only co-occur if they belong to the same sentence.</li> </ul> |

# **III. Graph mining: community detection**

**Goal**: cluster the graph-of-words into groups within which connections are dense and between which they are sparse  $\hookrightarrow$  The clusters match the **topics** and **sub-topics** within the document



In practice: retaining only the main communities improves coverage and removes noise

- Algorithm? List, defaults to "none". Choices are "fast greedy", "louvain", "walktrap", "infomap", "label prop" and "none"
- Size threshold? Numeric (from 0.4 to 1.0, by 0.1), defaults to 0.8. Percentile size threshold used to determine which communities should be considered to be main ones.
- Weighted? Boolean, defaults to FALSE. Whether edge weights should be used.
- **Directed?** Boolean, defaults to FALSE. Whether edge direction should be used (only available for "infomap").

Graph communities

# IV. Graph mining: degeneracy

### K-CORE DECOMPOSITION

- the *k*-core of G = (V, E) is a maximal connected subgraph of *G* in which every **vertex** *v* has at least degree *k* [Seidman 1983]
- v has core number k if it belongs to the k-core but not to the (k + 1)-core
- the *k*-core decomposition of *G* is the set of all its cores from k = 0 (*G* itself) to  $k = k_{max}$  (its main core)
- complexity: O(n + m) resp. O(m log(n)) in time in the (un)weighted cases, O(n) in space [Batagelj & Zaveršnik 2002]



### K-TRUSS DECOMPOSITION

- the *k*-truss of G = (V, E) is its largest subgraph where every edge *e* belongs to at least k 2 triangles [Cohen 2008]
- *e* has truss number k if it belongs to the k-truss but not to the (k + 1)-truss
- the **truss number** of *v* is the maximum truss number of its adjacent edges
- the *k*-truss decomposition of *G* is the set of all its *k*-trusses from 2 (*G*) to *k<sub>max</sub>* complexity:  $O(m^{1.5})$  in time and O(m + n) in space [Wang & Cheng 2012]



hierarchy of nested subgraphs whose cohesiveness and size respectively  $\nearrow$  and  $\searrow$  with k

nodes with high core numbers are not only central but also form cohesive subgraphs with other central nodes

 $\hookrightarrow$  they make influential spreaders [Kitsak 2010] and good keywords [Rousseau 2015]

compared to k-core, k-truss imposes constraints not only on the number of direct links but also on the number of common neighbors

- the k-trusses can be viewed as cores of the k-cores that filter out less cohesive elements [Wang and Cheng 2012]
- $\rightarrow$  nodes with high truss numbers are more influential (compared to *k*-core) [Malliaros et al. 2016]

#### Association for Computational Linguistics (ACL) 2016, Berlin, Germany

{anti5662, kskianis, mvazirg}@lix.polytechnique.fr