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. Text pre-processing ll. Graph building
= Keep only nouns and adjectives? Boolean, defaults to TRUE m Window size. Integer between 2 and 12, defaults to 3. The larger the window, the

denser the graph.

m Build on processed text? Boolean, defaults to TRUE. If used, tends to link more
distant words and produce denser graphs.

m Overspan sentences? Boolean, defaults to TRUE. If FALSE, two words can only
— The surviving terms are used as the nodes of the graph-of-words co-occur if they belong to the same sentence.

m Remove SMART stopwords? Boolean, defaults to TRUE

m Stemming? Boolean, defaults to TRUE. If used, tends to yield smaller and denser
graphs.

lll. Graph mining: community detection

Goal: cluster the graph-of-words into groups within which connections are dense and between which they are sparse
— The clusters match the topics and sub-topics within the document
In practice: retaining only the main communities improves coverage and removes hoise

m Algorithm? List, defaults to “none”. Choices are “fast greedy”, “louvain”, “walktrap”, “infomap”, “label prop” and “none”

m Size threshold? Numeric (from 0.4 to 1.0, by 0.1), defaults to 0.8. Percentile size threshold used to determine which
communities should be considered to be main ones.

m Weighted? Boolean, defaults to FALSE. Whether edge weights should be used.

m Directed? Boolean, defaults to FALSE. Whether edge direction should be used (only available for “infomap”). Graph communities

IV. Graph mining: degeneracy

K-CORE DECOMPOSITION K-TRUSS DECOMPOSITION

m the k-truss of G = (V, E) is its largest subgraph where every edge e belongs to

m the k-core of G = (V, E) is a maximal connected subgraph of G in which every |
at least k — 2 triangles [Cohen 2008]

vertex v has at least degree k [Seidman 1983] L¢
m v has core number Kk if it belongs to the k-core but not to the (k + 1)-core m e has truss number Kk if it belongs to the k-truss but not to the (k + 1)-truss

m the k-core decomposition of G is the set of all its cores from k = 0 (G itself) to m the truss number of v is the maximum truss number of its adjacent edges
k = Kmay (its main core) m the k-truss decomposition of G is the set of all its k-trusses from 2 (G) t0 Kimax

m complexity: O(n + m) resp. O(mlog(n)) in time in the (un)weighted cases, m complexity: O(m'?) in time and O(m + n) in space [Wang & Cheng 2012]
O(n) in space [Batagelj & Zaversnik 2002]

@ main core

@  main truss

k-core versus k-truss
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m hierarchy of nested subgraphs whose cohesiveness and size respectively ,~ | | ™ compared to k-core, k-truss imposes constraints not only on the number of
and \, with k | direct links but also on the number of common neighbors

m nodes with high core numbers are not only central but also form cohesive | | ™ the k-trusses can be viewed as cores of the k-cores that filter out less
subgraphs with other central nodes i cohesive elements [Wang and Cheng 2012] :
— they make influential spreaders [Kitsak 2010] and good keywords . ® < nodes with high truss numbers are more influential (compared to k-core)
[Rousseau 2015] [Malliaros et al. 2016] '
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