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Introduction

Graph-of-Words (GoW) fundamentals:

statistical approach based on the Distributional Hypothesis
edge between two terms if they co-occur within a sliding window of fixed size W
encodes term dependence strength (via edge weights) and term order (via edge direction)
enables graph theory to be applied to text
linear in time and space (resp. O(nW ), O(n + m)), for n nodes and m edges

GoW proved highly successful:
keyword extraction and summarization [Mihalcea & Tarau 2004, Rousseau & Vazirgiannis 2015]
information retrieval [Rousseau & Vazirgiannis 2013]
document classification [Malliaros & Skianis 2015, Rousseau et al. 2015]
and more...

Motivation for GoWvis:
GoW can be used to improve almost any NLP task...
...but it has many pre-processing, graph building, and graph mining parameters

↪→ there are needs to interactively explore the parameter space
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Mathematical aspects of 
computer-aided share trading. We 
consider problems of statistical 
analysis of share prices and propose 
probabilistic characteristics to 
describe the price series. We 
discuss three methods of 
mathematical modelling of price 
series with given probabilistic 
characteristics.

W = 8. Weighted, undirected edges. k -core. No community
detection. POS-based screening.

I. Text pre-processing

Keep only nouns and adjectives? Boolean, defaults to TRUE
Remove SMART stopwords? Boolean, defaults to TRUE
Stemming? Boolean, defaults to TRUE. If used, tends to yield smaller and denser
graphs.

↪→ The surviving terms are used as the nodes of the graph-of-words

II. Graph building

Window size. Integer between 2 and 12, defaults to 3. The larger the window, the
denser the graph.
Build on processed text? Boolean, defaults to TRUE. If used, tends to link more
distant words and produce denser graphs.
Overspan sentences? Boolean, defaults to TRUE. If FALSE, two words can only
co-occur if they belong to the same sentence.

III. Graph mining: community detection

Goal: cluster the graph-of-words into groups within which connections are dense and between which they are sparse
↪→ The clusters match the topics and sub-topics within the document
In practice: retaining only the main communities improves coverage and removes noise

Algorithm? List, defaults to “none”. Choices are “fast greedy”, “louvain”, “walktrap”, “infomap”, “label prop” and “none”
Size threshold? Numeric (from 0.4 to 1.0, by 0.1), defaults to 0.8. Percentile size threshold used to determine which
communities should be considered to be main ones.
Weighted? Boolean, defaults to FALSE. Whether edge weights should be used.
Directed? Boolean, defaults to FALSE. Whether edge direction should be used (only available for “infomap”).

(a) Graph with density-based clusters (b) Graph with uniform structure

Figure 2: Two directed graph examples. The left one (a) consists of three density-based clusters, while the right
one shows a homogeneous link density with the absence of obvious community structure.

inter-cluster edges. As we will see later, there are several popular density-based graph clustering techniques,

that either trying to maximize the internal cluster density, either minimize the number of extra-cluster edges

or both of them.

The above notion of clustering in directed networks can be considered as a natural extension from the

graph clustering problem in undirected networks (e.g., Refs. [40, 11, 19, 23]). In the next sections of the

paper we will see that some techniques, initially introduced for undirected networks, form the basis for

dealing with the directed graph clustering problem.

Moreover, for the undirected case, the density-based definition has close connections with the well-

known graph partitioning problem in the field of computer science (e.g., Ref. [53]). However, there are two

main differences between them: (a) in the graph partitioning problem, the desired number of partitions

(or clusters) k is a parameter of the problem and needs to be specified a priori, while in the case of

graph clustering and community detection problems this is not always prerequisite, and (b) the goal of the

partitioning problem is to equally assign nodes in the different partitions, where the size of each cluster will

be approximately equal to
n

k
[11]. On the other hand, in the clustering problem, the distribution of the

clusters’ sizes may not be uniform.

It is important to note here that extending the notion of density-based clusters to directed networks

is not always a trivial procedure. While some of the proposed objective measures for the undirected case

can be easily extended to directed graphs by considering in a meaningful way the directionality of the

edges (e.g., the criterion of modularity [50]), due to the existence of directed edges, some of the desired

cluster properties may not hold. Even worse, some graph-theoretic measures and concepts that help us to

evaluate the quality of density-based clusters cannot be easily extended and defined in the directed case.

For example, as pointed out by Schaeffer [19], each cluster in a graph should be connected (i.e., there should
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Graph communities

IV. Graph mining: degeneracy

K-CORE DECOMPOSITION

the k -core of G = (V ,E) is a maximal connected subgraph of G in which every
vertex v has at least degree k [Seidman 1983]
v has core number k if it belongs to the k -core but not to the (k + 1)-core
the k -core decomposition of G is the set of all its cores from k = 0 (G itself) to
k = kmax (its main core)
complexity: O(n + m) resp. O(m log(n)) in time in the (un)weighted cases,
O(n) in space [Batagelj & Zaveršnik 2002]

3-core

2-core

1-core

Core number Core numberCore number = 1 c = 2 c = 3
k -core decomposition

hierarchy of nested subgraphs whose cohesiveness and size respectively↗
and↘ with k
nodes with high core numbers are not only central but also form cohesive
subgraphs with other central nodes
↪→ they make influential spreaders [Kitsak 2010] and good keywords
[Rousseau 2015]

K-TRUSS DECOMPOSITION

the k -truss of G = (V ,E) is its largest subgraph where every edge e belongs to
at least k − 2 triangles [Cohen 2008]
e has truss number k if it belongs to the k -truss but not to the (k + 1)-truss
the truss number of v is the maximum truss number of its adjacent edges
the k -truss decomposition of G is the set of all its k -trusses from 2 (G) to kmax

complexity: O(m1.5) in time and O(m + n) in space [Wang & Cheng 2012]
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k -core versus k -truss

compared to k -core, k -truss imposes constraints not only on the number of
direct links but also on the number of common neighbors
the k -trusses can be viewed as cores of the k -cores that filter out less
cohesive elements [Wang and Cheng 2012]
↪→ nodes with high truss numbers are more influential (compared to k -core)
[Malliaros et al. 2016]
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