P&C for networks	

Social networks

Word co-occurrence networks

Conclusion 00 References

Perturb and Combine to Identify Influential Spreaders in Real-World Networks

Antoine Tixier¹, Maria Rossi¹, Fragkiskos Malliaros², Jesse Read¹, Michalis Vazirgiannis¹ ¹DaSciM team, École Polytechnique; ²CentraleSupélec

Oral at ASONAM'19, Vancouver, Canada, Aug 28, 2019 Contact: antoine.tixier-1@colorado.edu Paper: https://arxiv.org/pdf/1807.09586.pdf

Motiv

Motivation 000000	P&C for networks 0000	Social networks	Word co-occurrence networks	Conclusion OO	References
Agenda					

1 Motivation

- 2 P&C for networks
- 3 Social networks
- 4 Word co-occurrence networks

5 Conclusion

э.

Motivation	P&C for networks			Conclusion	References
00000	0000	000	000	00	
Influenti	al spreader	detection			

Influential spreaders: nodes that can diffuse information to the largest part of the network in a given amount of time. Influential spreader detection can be broken down into:

- $\checkmark\,$ identifying <code>individual</code> influential nodes
- $\checkmark\,$ influence maximization: identifying a group of nodes that together maximize the total spread of influence
- \rightarrow here, we focus on the identification of individual influential nodes

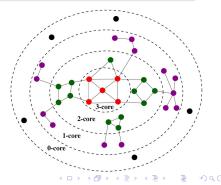
Many important applications: epidemiology, viral marketing, social media analysis, expert finding, NLP...

- \triangle core number of $v \in V$: highest order of a *k*-core that contains *v*
- \triangle very fast: O(|V| + |E|) and $O(|E|\log(|V|))$ in weighted case (Batagelj and Zaveršnik 2002)

Key facts:

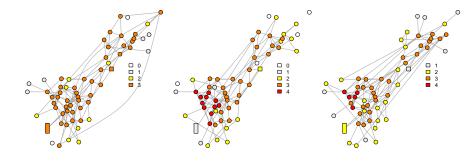
+ core numbers **correlate well with spreading influence**, and much better than degrees or PageRank scores (Kitsak et al. 2010)

- k-cores are **unstable** to perturbations (Adiga and Vullikanti 2013; Goltsev, Dorogovtsev, and Mendes 2006).



Instability of graph degeneracy						
000000	0000	000	000	00		
Motivation	P&C for networks			Conclusion	References	

instability of graph degeneracy



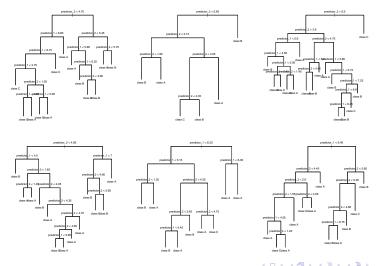
node	original	pert. $\#1$	pert. #2	pert. #3
square	4	3	2	1
rectangle	1	3	1	2

イロト イヨト イヨト イヨト

э

Motivation	P&C for networks			Conclusion	References
000000	0000	000	000	00	
Link w	ith unstable	e learners			

Decision trees are unstable to small perturbations of their training set:



- \bigtriangleup unstable learners: small changes in training set \rightarrow large changes in predictions
- \triangle a.k.a. strong learners or low bias-high variance algorithms (Breiman 1996b)
- $\bigtriangleup\,$ e.g., unpruned decision trees

Key fact: well known that **Perturb and Combine** (P&C) strategies boost the performance of unstable learners

Most famous example: **b**ootstrap **agg**regat**ing** (**bagging**) (Breiman 1996a), at the core of Random Forest (Breiman 2001)

Most famous P&C approach: bagging

- \triangle bootstrap samples are generated by **perturbing** the training set (drawing with replacement)
- \bigtriangleup unpruned trees are trained in parallel on the bootstrap samples
- \bigtriangleup individual predictions are **combined** through averaging or voting

P&C works mainly by **reducing the variance** of high variance-low bias algorithms (Breiman 1996a). It cannot help with low-variance algorithms, e.g., k nearest-neighbors.

Our ide	a: nerturh	and comb	ine for networks		
	0000				
Motivation	P&C for networks	Social networks	Word co-occurrence networks	Conclusion	References

Recap

- graph degeneracy is very effective at locating influential spreaders, but unstable
- in ML, P&C is known to boost unstable models
- \rightarrow Our objective is to show that:

"Like unstable learners, degeneracy-based node scoring functions, and more generally any unstable node scoring function, benefits from P&C"

More precisely:

"One can identify better spreaders by aggregating node scores computed on multiple perturbed versions of the original network rather than by using the scores computed on the original network"

Perturb and combine for networks		
Motivation P&C for networks Social networks Word co-occurrence networks 000000 0●00 000 000	Conclusion 00	References

P&C for networks

- **perturb**: create *n* perturbed versions of the original network
- mine: apply a node scoring function to each perturbed network,
- combine: combine the results.

P&C for networks is trivially parallelizable

 \rightarrow P&C scores do not take more time to obtain than the original scores, provided that n workers are available

Motivation	P&C for networks		Conclusion	References
	0000			
Perturl	b step			

Edge-based perturbation scheme (Adiga and Vullikanti 2013)

Let G(V, E) be the original graph and \mathbb{G} be a random graph model.

- \triangle if edge (u, v) already exists, it is deleted with some probability
- \bigtriangleup if it does not exist, it is added with some probability
- riangle variant in which edge weights are incremented/decremented

probabilities are given by $\mathbb G$

Random graph models

- **uniform perturbation** with the Erdős-Rényi (ER) model (Erdös and Rényi 1960)
- **degree assortative perturbation** with the Chung-Lu (CL) model (Chung and Lu 2002)

Motivation	P&C for networks		Conclusion	References
	0000			
Mine a	and combine	e steps		

Mine

- ✓ since P&C in machine learning is most effective when used with unstable learners, we experimented with k-core and weighted k-core
- ✓ we also tried with PageRank (Page et al. 1999), supposedly more stable (Ipsen and Wills n.d.; Ng, Zheng, and Jordan 2001)

Combine

We use averaging, like in bagging regression trees

Motivation	P&C for networks	Social networks	Word co-occurrence networks	Conclusion	References
		000			
Social	networks: e	experiments			

	V	E	diameter
Email-Enron	33,696	180,811	11
Epinions	75,877	405,739	14
WIKI-VOTE	7,066	100,736	7

Experimental setup (F. D. Malliaros, Rossi, and Vazirgiannis 2016)

- we compare the average severity of the epidemic when started from the top nodes in terms of original scores/P&C scores
- epidemics are simulated with SIR (Kermack and McKendrick 1932)
- results are averaged over N_e epidemics started from each node in the trigger population^{*} and over all nodes in that population

*main core (for unweighted and weighted *k*-core) or top 100 nodes (for PageRank)

we assigned as edge weights the max degree of their endpoints

Social n	etworks: res	sults $(1/2)$			
Motivation 000000	P&C for networks 0000	Social networks ○●○	Word co-occurrence networks	Conclusion 00	References

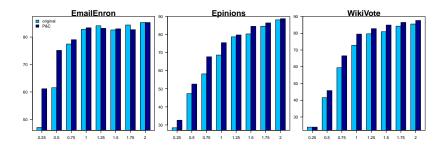
						Time S	tep		
	Network	Scores	2	4	6	8	10	Total	+%
<i>k</i> -c	Enron	P&C	16	89	300	419	269	2,538	3.76
		original	14	77	269	401	275	2,446	
Unweighted	Epinions	P&C	8	34	110	245	317	2,436	4.35
<u>[]</u>		original	7	30	100	224	301	2,330	
ME	WikiVote	P&C	3	8	17	29	40	490	3.47
Ľ		original	3	8	16	28	37	473	
0	Enron	P&C	26	141	407	445	226	2,724	3.52
<i>k</i> -0		original	20	110	345	433	253	2,628	
Weighted <i>k</i> -c	Epinions	P&C	11	46	146	302	353	2,689	2.42
ght		original	11	42	135	286	345	2,624	
Vei	WIKIVOTE	P&C	5	12	24	39	50	612	19.3
>		original	4	9	18	31	42	513	
	Enron	P&C	16	86	278	389	266	2,454	4.93
누		original	15	80	259	366	255	2,333	
PageRank	Epinions	P&C	11	42	132	276	336	2,598	2.04
ge		original	11	41	127	267	326	2,545	
Ра	WikiVote	P&C	5	11	22	38	49	596	2.35
		original	5	11	22	36	48	582	

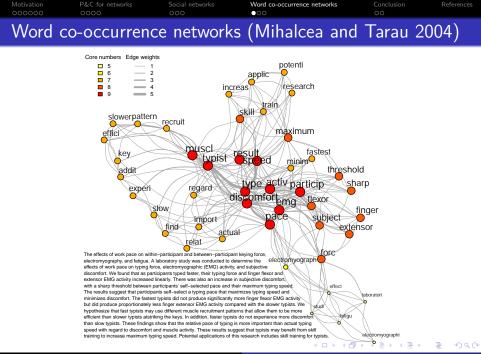
▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Motivation	P&C for networks	Social networks	Word co-occurrence networks	Conclusion	References
000000	0000	000	000	00	
Social	networks: r	esults (2/2	2)		

Ranking comparison for unweighted k-core

How much of the p% best spreaders in terms of SIR are present in the top p% nodes in terms of original and P&C scores?





keywords are **influential nodes** within the word co-occurrence network of their document (Tixier, F. Malliaros, and Vazirgiannis 2016). *Does P&C on graphs of words improve keyword extraction?*

Experimental setup

- Hulth 2003 dataset of 500 research paper abstracts:
 - \sim 120 words/document
 - ~ 21 keywords from human annotators/document on average
 - \sim # of nodes, edges, and diameter: 32, 155, and 3.6
- for unweighted and weighted k-core, keywords as main core
- for PageRank, keywords as top 33% nodes

Word	co-occurren	ce network	s: results		
000000	0000	000	000	00	
Motivation	P&C for networks		Word co-occurrence networks	Conclusion	References

	scores	precision	recall	F1-score	+%
unweighted k-core	P&C	52.09	51.25	54.88	5.70
	original	48.76	46.90	51.75	
weighted <i>k</i> -core	P&C	50.53	48.54	52.50	7.45
	original	48.07	46.81	48.86	
PageRank	P&C	45.53	42.73	46.75	2.33
	original	45.21	41.89	45.66	
<	[Tixier16]	48.79	72.78	56.00	
SOTA	[Rousseau15]	61.24	50.32	51.92	
õ	[Mihalcea04]	51.95	54.99	50.40	

Motivation	P&C for networks			Conclusion	References
000000	0000	000	000	•0	
Conclu	ision				

Contributions

- we proposed one of the first applications of P&C to networks
- we showed that P&C scores identify better spreaders than the original scores
- P&C for networks is trivially parallelizable
- our framework is general and can be used with **other graph mining algorithms** and applied to other tasks (e.g., **community detection**)

What's more in the paper?

- theoretical analysis:
 - define bias and variance of node scoring function
 - demonstrate that P&C reduces error
- more details and experiments

Motivation P&C	C for networks S	ocial networks	Word co-occurrence networks	Conclusion	References
000000 000	00 C	000	000	00	

Thank you for your attention!

Questions? \rightarrow antoine.tixier-1@colorado.edu Paper: https://arxiv.org/pdf/1807.09586.pdf

Motivation 000000	P&C for networks 0000	Social networks 000	Word co-occurrence networks	Conclusion OO	References
Referer	nces I				

- Adiga, Abhijin and Anil Kumar S Vullikanti (2013). "How robust is the core of a network?". In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, pp. 541–556.
- Batagelj, Vladimir and Matjaž Zaveršnik (2002). "Generalized cores". In: *arXiv preprint cs/0202039*.
- Breiman, Leo (1996a). "Bagging predictors". In: *Machine learning* 24.2, pp. 123–140.
- (1996b). "Bias, variance, and arcing classifiers". In:
- (2001). "Random forests". In: Machine learning 45.1, pp. 5-32.
- Chung, Fan and Linyuan Lu (2002). "The average distances in random graphs with given expected degrees". In: *Proceedings of the National Academy of Sciences* 99.25, pp. 15879–15882.
- Erdös, P. and A. Rényi (1960). "On the evolution of random graphs". In: *Publ. Math. Inst. Hung. Acad. Sci* 5, pp. 17–61.

Motivation 000000	P&C for networks 0000	Social networks 000	Word co-occurrence networks	Conclusion OO	References
Refere	nces II				

- Goltsev, Alexander V, Sergey N Dorogovtsev, and Jose Ferreira F Mendes (2006). "k-core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects". In: *Physical Review E* 73.5, p. 056101.
- Hulth, Anette (2003). "Improved automatic keyword extraction given more linguistic knowledge". In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, pp. 216–223.
- Ipsen, Ilse CF and Rebecca S Wills (n.d.). "Mathematical properties and analysis of Google's PageRank". In:
- Kermack, William O and Anderson G McKendrick (1932). "Contributions to the mathematical theory of epidemics. II. The problem of endemicity". In: vol. 138. 834. JSTOR, pp. 55–83.
 - Kitsak, Maksim et al. (2010). "Identification of influential spreaders in complex networks". In: *Nature physics* 6.11, pp. 888–893.

Motivation 000000	P&C for networks	Social networks	Word co-occurrence networks	Conclusion	References
Refere	nces III				

- Malliaros, Fragkiskos D, Maria-Evgenia G Rossi, and Michalis Vazirgiannis (2016). "Locating influential nodes in complex networks". In: Scientific reports 6, p. 19307.
- Mihalcea, Rada and Paul Tarau (2004). "TextRank: bringing order into texts". In: Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics.
- Ng, Andrew Y, Alice X Zheng, and Michael I Jordan (2001). "Link analysis, eigenvectors and stability". In: International Joint Conference on Artificial Intelligence. Vol. 17. 1. LAWRENCE ERLBAUM ASSOCIATES LTD, pp. 903–910.
- Page, Lawrence et al. (1999). The PageRank citation ranking: Bringing order to the web.. Tech. rep. Stanford InfoLab.
- Rousseau, François and Michalis Vazirgiannis (2015). "Main Core Retention on Graph-of-Words for Single-Document Keyword Extraction". In: Advances in Information Retrieval. Springer, pp. 382–393.

Motivation 000000	P&C for networks	Social networks 000	Word co-occurrence networks	Conclusion OO	References
Referer	nces IV				

Seidman, Stephen B (1983). "Network structure and minimum degree". In: *Social networks* 5.3, pp. 269–287.

Tixier, Antoine, Fragkiskos Malliaros, and Michalis Vazirgiannis (2016). "A graph degeneracy-based approach to keyword extraction". In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1860–1870.