A Graph Degeneracy-based Approach to Keyword Extraction

Antoine J.-P. Tixier¹, Fragkiskos D. Malliaros^{1,2}, Michalis Vazirgiannis¹

¹Computer Science Laboratory, École Polytechnique, Palaiseau, France ²Department of Computer Science and Engineering, UC San Diego, La Jolla, CA, USA

Motivation

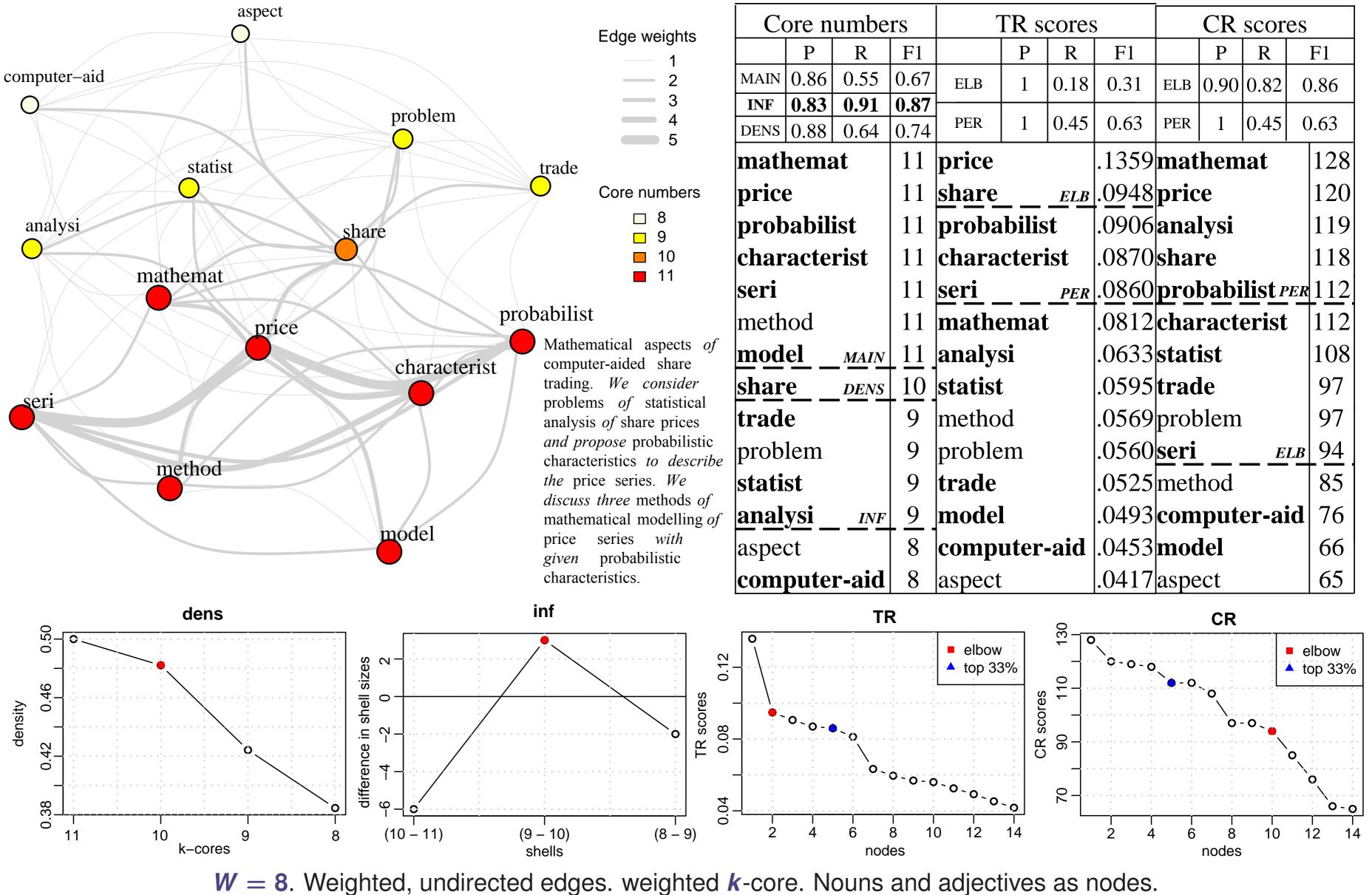
Graph-degeneracy is better than PageRank for keyword extraction [Rousseau & Vazirgiannis] 2015], but:

retaining only the main core is suboptimal: one cannot expect all the keywords to live in the top level of the hierarchy

 \hookrightarrow how to automatically select the best hierarchy level?

- *dens*: go down the hierarchy until a drop in density is observed

- *inf*: go down the hierarchy as long as the shells \nearrow in size



										-				
S	Core numbers]]	CR scores								
.5	P R		R	F1		P R		F1		P R		F1		
	MAIN	0.86	0.55	0.67	ELB	1	0.18	0.31	ELB	0.90	0.82	0.86		
	INF	0.83	0.91	0.87										
	DENS	0.88	0.64	0.74	PER	1 0.45		0.63	PER	1	0.45	0.63		
	mathemat			11	price			.1359	mat	hem	at		128	
rs	price			11	share		ELB	.0948	pric	e			120	
	probabilist			11	probabilist			.0906	5 analysi 1				119	
	characterist			11	characterist			.0870	share				118	
	seri			11	seri <u>PER</u>			.0860	pro	babi	list P	ER	112	
	method			11	mathemat			.0812	characterist				112	
s of	mod	<u>el</u>	MAIN	11	analys	si		.0633	stat	ist			108	
er ool	shar	e	DENS	10	statist			.0595	trad	le			97	
cal es	trad	e		9	metho	d		.0569	prot	olem			97	
istic scribe	prob	lem		9	proble	m		.0560	seri		E	LB	94	
	stati	ct		Q	trada			0525	metl	hod			85	

working with subgraphs lacks flexibility

 \hookrightarrow how to rank nodes individually while retaining the valuable cohesiveness information captured by degeneracy?

- CoreRank (CR): (1) assign to each node the sum of the core or truss numbers of its neighbors, (2) select the elbow in the scores curve (CRE) or retain the top p% nodes (*CRP*)

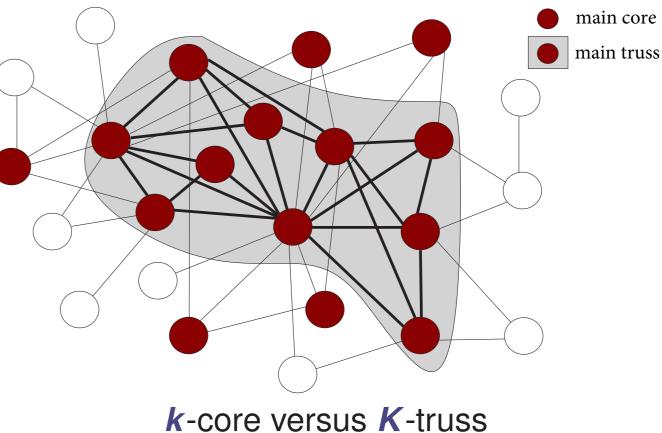
Graph degeneracy

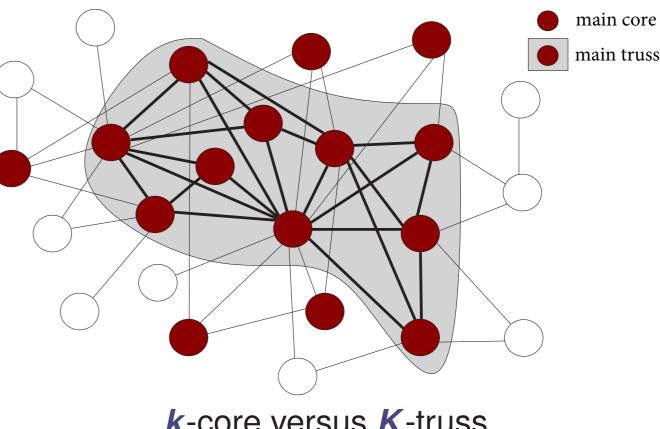
k-CORE DECOMPOSITION

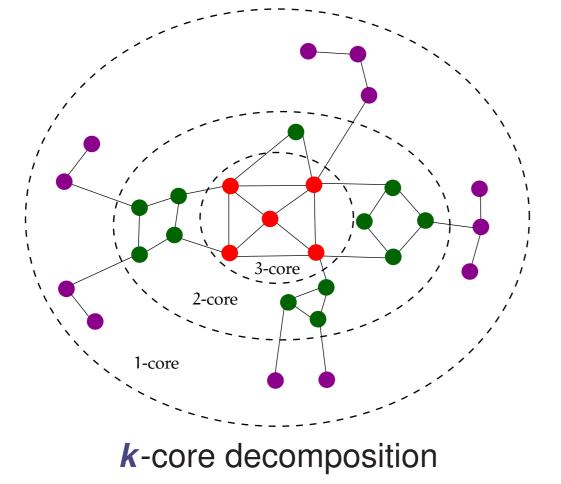
- the k-core of G = (V, E) is a maximal connected subgraph of G in which every vertex v has at least degree k [Seidman 1983]
- v has core number k if it belongs to the k-core but not to the (k + 1)-core
- the k-core decomposition of G is the set of all its cores from k = 0 (G itself) to $k = k_{max}$ (its main core)
- complexity: O(n + m) resp. $O(m \log(n))$ in time in the (un)weighted cases, O(n) in space [Batagelj & Zaveršnik 2002]

K-TRUSS DECOMPOSITION

- the K-truss of G = (V, E) is its largest subgraph where every edge e belongs to at least K - 2 triangles [Cohen 2008]
- *e* has truss number K if it belongs to the K-truss but not to the (K + 1)-truss
- the truss number of v is the maximum truss number of its adjacent edges
- the K-truss decomposition of G is the set of all its K-trusses from 2 (G) to K_{max}
- complexity: $O(m^{1.5})$ in time and O(m + n) in space [Wang & Cheng 2012]







 \blacksquare hierarchy of nested subgraphs whose cohesiveness and size respectively \nearrow and \searrow with **k**

nodes with high core numbers are not only central but also form cohesive subgraphs with other central nodes

- compared to k-core, K-truss imposes constraints not only on the number of direct links but also on the number of common neighbors
- the *K*-trusses can be viewed as *cores* of the *k*-cores that filter out less cohesive elements [Wang & Cheng 2012]

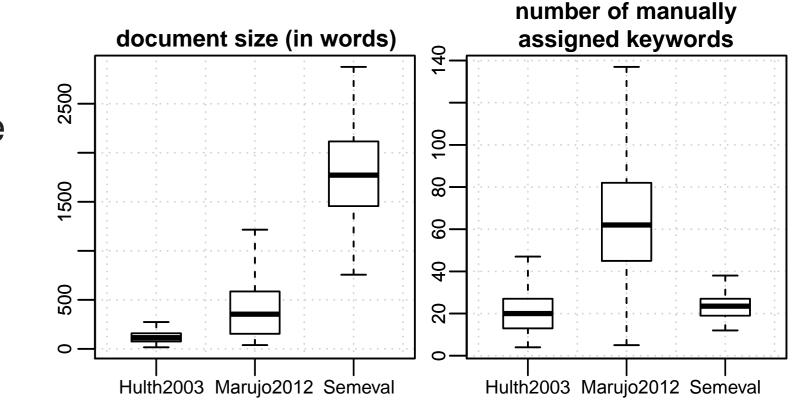
Degeneracy and Spreading Influence

- in social networks, the best spreaders are not the highly connected individuals, but those located at the core of the network [Kitsak 2010]
- the truss number is an even better indicator of spreading influence than the core number [Malliaros et al. 2016]

the spreading influence of a node is related to its structural position within the graph (*density* and *cohesiveness*) rather than to its **prestige** (*random walk*-based)

Datasets

- Hulth2003: 500 abstracts from the Inspec physics & engineering database
- Marujo2012: 450 web news stories covering 10 different topics
- **Semeval**: 100 scientific papers from



degree) \Rightarrow influential words should make better keywords

Results

For each data set, we retained the degeneracy technique and window size giving the absolute best performance

- our methods outperform all baselines by a wide margin
- drastic improvement in recall, for a comparatively lower loss in precision
- K-truss needs greater window sizes to perform well (more) triangles)
- on long documents (Semeval), the lack of flexibility of subgraph-based approaches (*dens* and *inf*) is a handicap. Working at the node level (*CRP*) is better

	precisior	n recall	F1-score		precisior	recall	F1-score		precisior	recall	F1-score
dens	48.79	72.78	56.09*	dens	47.62	71.46	52.94*	dens	8.44	79.45	15.06
inf	48.96	72.19	55.98*	inf	53.88	57.54	49.10*	inf	17.70	65.53	26.68
CRP	61.53	38.73	45.75	CRP	54.88	36.01	40.75	CRP	49.67	32.88	38.98*
CRE	65.33	37.90	44.11	CRE	63.17	25.77	34.41	CRE	25.82	58.80	34.86
main [†]	51.95	54.99	50.49	main [†]	64.05	34.02	36.44	main [†]	25.73	49.61	32.83
TRP [†]	65.43	41.37	48.79	TRP[†]	55.96	36.48	41.44	TRP [†]	47.93	31.74	37.64
TRE [†]	71.34	36.44	45.77	TRE [†]	65.50	21.32	30.68	TRE [†]	33.87	46.08	37.55
	3, <i>K</i> -truss,)1) w.r.t. al		*stat. sign. s [†]	Marujo201 (p < 0.00			. *stat. sign. s [†]	. Semeval, (<i>p</i> < 0.00	-		stat. sign.

Empirical Methods on Natural Language Processing (EMNLP) 2016, Austin, TX, USA

{anti5662, fmalliaros, mvazirg}@lix.polytechnique.fr