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Agenda

X Diachronic Word Embeddings Reveal Statistical Laws of Semantic
Change (ACL 2016). From Leskovec’s team at Stanford.

X Corpus-independent Generic Keyphrase Extraction using Word
Embedding Vectors (WDSM 2015 workshop on deep learning).
From the University of Western Australia.

X A Graph Degeneracy-based Approach to Keyword Extraction (our
EMNLP 2016 paper)
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Diachronic Word Embeddings (ACL 2016)
Diachronic: temporal evolution. Synchronic: fixed point in time.

Goal: Use historical word embeddings to study the evolution of word
meaning over time (i.e., semantic change).

Ways to quantify semantic change:
- Pairwise cosine similarity time series (i.e., linguistic “shifts”):

s(t)(wi ,wj) = cos-sim(w (t)
i ,w (t)

j ) (1)

between two words wi and wj over a time-period
- Semantic displacement:

∆(t)(wi ) = cos-dist(w (t)
i ,w (t+1)

i ) (2)

for the same word over a time-period (i.e., “rate” of semantic
change)

*dist = 1− sim
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Diachronic Word Embeddings (ACL 2016)

Learning word embeddings is a stochastic process (random initialization,
negative sampling, etc.) ⇒ word-word distances are invariant from
training to training, but the axes are recycled.

⇒ to enable comparison between embeddings trained at different times
(i.e., on different corpora), we need to perform vector alignment. This
can be done via orthogonal Procrustes:

R(t) = arg min
Q>Q=I

‖QW (t) −W (t+1)‖F , (3)

W (t) ∈ Rd×|V| is the embedding space at time t, ‖ · ‖F is the Frobenius
norm.
The solution R(t) ∈ Rd×d (orthogonal) corresponds to the best rotational
alignment between W (t) and W (t+1). It is a mapping/ transfer matrix.
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Diachronic Word Embeddings (ACL 2016)

Qualitative results:

- gay shifted from meaning “cheerful” to referring to homosexuality
- in the early 20th century broadcast referred to “casting out seeds”,
it now means “transmitting signals”

- Awful underwent a process of pejoration, as it shifted from meaning
“full of awe” to meaning “terrible”
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Diachronic Word Embeddings (ACL 2016)

Quantitative results:

the rate of semantic change obeys the following power-law relation:

∆(wi ) ∝ f (wi )α × d(wi )β (4)

where f is the frequency of wi , d its polysemy, α < 0, and β > 0.
⇒ frequent words change at slower rates while polysemous words
change faster

Recall that:

∆(t)(wi ) = cos-dist(w (t)
i ,w (t+1)

i ) (5)

Polysemy is roughly equivalent to the contextual diversity of a word,
measured in terms of clustering coefficient within a co-occurrence
network. High: always, great, quite... Low: retrieval, thirties, mom...
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GoW combined with Word Embeddings

How to combine local co-occurrence statistics with global exterior
knowledge to get better edge weights in graphs-of-words?

⇒ Word attraction force (adaptation of Newton’s law of universal
gravitation):

f (wi ,wj) = freq(wi )× freq(wj)
d2 (6)

Where freq(w) is the count of word w in document D and d is the
euclidean distance between wi and wj in an embedding space.
×
⇒ Dice coefficient (phraseness likelihood):

Dice(wi ,wj) = 2freq(wi ,wj)
freq(wi ) + freq(wj)

(7)

Where freq(wi ,wj) is the co-occurrence count of wi and wj in D.
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Our EMNLP 2016 paper: motivation
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discuss three methods of mathematical modelling 
of price series with given probabilistic 
characteristics.
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Our EMNLP 2016 paper: experiments

Hulth2003: 500 abstracts drawn from the Inspec database of
physics and engineering papers
Marujo2012: 450 web news stories covering 10 different topics from
art and culture to business, sport, and technology
Semeval: 100 scientific papers from the ACM Digital Library
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Our EMNLP 2016 paper: results

precision recall F1-score
dens 48.79 72.78 56.09*

inf 48.96 72.19 55.98*
CRP 61.53 38.73 45.75
CRE 65.33 37.90 44.11
main 51.95 54.99 50.49
TRP 65.43 41.37 48.79
TRE 71.34 36.44 45.77

Hulth2003, K -truss, W = 11.

precision recall F1-score
dens 47.62 71.46 52.94*

inf 53.88 57.54 49.10*
CRP 54.88 36.01 40.75
CRE 63.17 25.77 34.41
main 64.05 34.02 36.44
TRP 55.96 36.48 41.44
TRE 65.50 21.32 30.68

Marujo2012, k-core, W = 13.

precision recall F1-score
dens 8.44 79.45 15.06

inf 17.70 65.53 26.68
CRP 49.67 32.88 38.98*
CRE 25.82 58.80 34.86
main 25.73 49.61 32.83
TRP 47.93 31.74 37.64
TRE 33.87 46.08 37.55

Semeval, K -truss, W = 20.
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Our EMNLP 2016 paper: impact of window size
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