| Agenda | ACL 2016 | WSDM 2015 | EMNLP 2016 | References |
|--------|----------|-----------|------------|------------|
| 0      | 0000     | 0         | 0000       | 0          |

# DaSciM's Weekly Group Meeting

Paper review

Antoine Tixier October 14, 2016

590

크

| Agenda | ACL 2016 | WSDM 2015 | EMNLP 2016 | References |
|--------|----------|-----------|------------|------------|
| •      | 0000     |           | 0000       |            |
| Agenda |          |           |            |            |

✓ Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change (ACL 2016). From Leskovec's team at Stanford.

 ✓ Corpus-independent Generic Keyphrase Extraction using Word Embedding Vectors (*WDSM 2015 workshop on deep learning*). From the University of Western Australia.

✓ A Graph Degeneracy-based Approach to Keyword Extraction (*our* EMNLP 2016 paper)

A B K A B K

Diachronic: temporal evolution. Synchronic: fixed point in time.

**Goal**: Use **historical** word embeddings to study the evolution of word meaning over time (i.e., semantic change).

Ways to quantify semantic change:

- Pairwise cosine similarity time series (i.e., linguistic "shifts"):

$$s^{(t)}(w_i, w_j) = \operatorname{cos-sim}(w_i^{(t)}, w_j^{(t)})$$
 (1)

between two words  $w_i$  and  $w_j$  over a time-period

- Semantic displacement:

$$\Delta^{(t)}(w_i) = \operatorname{cos-dist}(w_i^{(t)}, w_i^{(t+1)})$$
(2)

for the *same word* over a time-period (i.e., "rate" of semantic change)

\*dist = 1 - sim

레이 에트이 에트이 트립

Agenda ACL 2016 WSDM 2015 EMNLP 2016 References •••••
Diachronic Word Embeddings (ACL 2016)

Learning word embeddings is a **stochastic** process (random initialization, negative sampling, etc.)  $\Rightarrow$  word-word distances are *invariant* from training to training, but the axes are *recycled*.

 $\Rightarrow$  to enable comparison between embeddings trained at different times (i.e., on different corpora), we need to perform **vector alignment**. This can be done via **orthogonal Procrustes**:

$$R^{(t)} = \arg \min_{Q^{\top}Q=I} \|QW^{(t)} - W^{(t+1)}\|_{F},$$
(3)

 $W^{(t)} \in \mathbb{R}^{d \times |\mathcal{V}|}$  is the embedding space at time t,  $\|\cdot\|_F$  is the Frobenius norm.

The solution  $R^{(t)} \in \mathbb{R}^{d \times d}$  (orthogonal) corresponds to the best rotational alignment between  $W^{(t)}$  and  $W^{(t+1)}$ . It is a mapping/ transfer matrix.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → � � �



#### Qualitative results:



- gay shifted from meaning "cheerful" to referring to homosexuality
- in the early 20th century *broadcast* referred to "casting out seeds", it now means "transmitting signals"
- *Awful* underwent a process of pejoration, as it shifted from meaning "full of awe" to meaning "terrible"

. . . . . . . .



Quantitative results:

the rate of semantic change obeys the following power-law relation:

$$\Delta(w_i) \propto f(w_i)^{\alpha} \times d(w_i)^{\beta}$$
(4)

where f is the frequency of  $w_i$ , d its polysemy,  $\alpha < 0$ , and  $\beta > 0$ .

 $\Rightarrow$  frequent words change at slower rates while polysemous words change faster

Recall that:

$$\Delta^{(t)}(w_i) = \operatorname{cos-dist}(w_i^{(t)}, w_i^{(t+1)})$$
(5)

**Polysemy** is roughly equivalent to the **contextual diversity** of a word, measured in terms of clustering coefficient within a co-occurrence network. High: always, great, quite... Low: retrieval, thirties, mom...

ACL 2016 WSDM 2015 References GoW combined with Word Embeddings

How to combine **local** co-occurrence statistics with **global** exterior knowledge to get better edge weights in graphs-of-words?

 $\Rightarrow$  Word **attraction force** (adaptation of Newton's law of universal gravitation):

$$f(w_i, w_j) = \frac{freq(w_i) \times freq(w_j)}{d^2}$$
(6)

Where freq(w) is the count of word w in document D and d is the euclidean distance between  $w_i$  and  $w_i$  in an embedding space.

×

 $\Rightarrow$  **Dice coefficient** (phraseness likelihood):

$$Dice(w_i, w_j) = \frac{2freq(w_i, w_j)}{freq(w_i) + freq(w_j)}$$
(7)

Where  $freq(w_i, w_i)$  is the co-occurrence count of  $w_i$  and  $w_i$  in D.

| <u>с</u> |          |           |            |            |
|----------|----------|-----------|------------|------------|
|          | 0000     |           | 0000       |            |
| Agenda   | ACL 2016 | WSDM 2015 | EMNLP 2016 | References |

### Our EMNLP 2016 paper: motivation



| C     | ore n | umbe  | rs   |         | ΓR s  | cores | 5     | CR scores |      |        |    |     |
|-------|-------|-------|------|---------|-------|-------|-------|-----------|------|--------|----|-----|
|       | Р     | R     | Fl   |         | Р     | R     | F1    |           | Р    | R      |    | Fl  |
| MAIN  | 0.86  | 0.55  | 0.67 | ELB     | 1     | 0.18  | 0.31  | ELB       | 0.90 | 0.82   | (  | .86 |
| INF   | 0.83  | 0.91  | 0.87 | nen     | 1     | 0.45  | 0.02  | nrn       | 1    | 0.45   |    | 0   |
| DENS  | 0.88  | 0.64  | 0.74 | PER     | 1     | 0.45  | 0.65  | PER       | 1    | 0.45   |    | .05 |
| matl  | nema  | at    | 11   | price   |       |       | .1359 | mat       | hem  | at     |    | 128 |
| price | e     |       | 11   | share   |       | ELB   | .0948 | pric      | e    |        |    | 120 |
| prob  | abil  | ist   | 11   | proba   | bilis | t     | .0906 | ana       | lysi |        |    | 119 |
| char  | acte  | rist  | 11   | chara   | cteri | ist   | .0870 | sha       | re   |        |    | 118 |
| seri  |       |       | 11   | seri    |       | PER   | .0860 | pro       | babi | list P | ER | 112 |
| meth  | od    |       | 11   | mathe   | emat  |       | .0812 | cha       | ract | erist  |    | 112 |
| mod   | el    | MAIN  | 11   | analy   | si    |       | .0633 | stat      | ist  |        |    | 108 |
| shar  | e     | DENS  | 10   | statist | ;     |       | .0595 | trad      | le   |        |    | 97  |
| trad  | e     |       | 9    | metho   | d     |       | .0569 | prot      | olem |        |    | 97  |
| prob  | lem   |       | 9    | proble  | m     |       | .0560 | seri      |      | E      | LВ | 94  |
| stati | st    |       | 9    | trade   |       |       | .0525 | met       | hod  |        |    | 85  |
| anal  | ysi _ | INF   | 9    | mode    | l     |       | .0493 | com       | iput | er-ai  | d  | 76  |
| aspe  | ct    |       | 8    | comp    | uter  | -aid  | .0453 | mod       | lel  |        |    | 66  |
| com   | pute  | r-aid | 8    | aspect  |       |       | .0417 | aspe      | ect  |        |    | 65  |



イロト イヨト イヨト イヨト

æ

Antoine Tixier

EMNLP 2016 0.000

# Our EMNLP 2016 paper: experiments

Hulth2003: 500 abstracts drawn from the Inspec database of physics and engineering papers

Marujo2012: 450 web news stories covering 10 different topics from art and culture to business, sport, and technology

**Semeval**: 100 scientific papers from the ACM Digital Library



| Agenda | ACL 2016 | WSDM 2015 | EMNLP 2016 | References |
|--------|----------|-----------|------------|------------|
|        | 0000     |           | 0000       |            |
|        |          |           |            |            |

# Our EMNLP 2016 paper: results

|      | precision | recall | F1-score |
|------|-----------|--------|----------|
| dens | 48.79     | 72.78  | 56.09*   |
| inf  | 48.96     | 72.19  | 55.98*   |
| CRP  | 61.53     | 38.73  | 45.75    |
| CRE  | 65.33     | 37.90  | 44.11    |
| main | 51.95     | 54.99  | 50.49    |
| TRP  | 65.43     | 41.37  | 48.79    |
| TRE  | 71.34     | 36.44  | 45.77    |

Hulth2003, K-truss, W = 11.

|      | precision | recall | F1-score |
|------|-----------|--------|----------|
| dens | 47.62     | 71.46  | 52.94*   |
| inf  | 53.88     | 57.54  | 49.10*   |
| CRP  | 54.88     | 36.01  | 40.75    |
| CRE  | 63.17     | 25.77  | 34.41    |
| main | 64.05     | 34.02  | 36.44    |
| TRP  | 55.96     | 36.48  | 41.44    |
| TRE  | 65.50     | 21.32  | 30.68    |

|      | precision | recall | F1-score |
|------|-----------|--------|----------|
| dens | 8.44      | 79.45  | 15.06    |
| inf  | 17.70     | 65.53  | 26.68    |
| CRP  | 49.67     | 32.88  | 38.98*   |
| CRE  | 25.82     | 58.80  | 34.86    |
| main | 25.73     | 49.61  | 32.83    |
| TRP  | 47.93     | 31.74  | 37.64    |
| TRE  | 33.87     | 46.08  | 37.55    |

Semeval, K-truss, W = 20.

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ● ● ●

Marujo2012, k-core, W = 13.







11/12

Antoine Tixier

DaSciM's Weekly Group Meeting

| Agenda     | ACL 2016 | WSDM 2015 | EMNLP 2016 | References |
|------------|----------|-----------|------------|------------|
|            | 0000     |           | 0000       | •          |
| References |          |           |            |            |

- Hamilton, W. L., Leskovec, J., Jurafsky, D. (2016). Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. arXiv preprint arXiv:1605.09096.
- Wang, C., Mahadevan, S. (2008, July). Manifold alignment using procrustes analysis. In Proceedings of the 25th international conference on Machine learning (pp. 1120-1127). ACM.
- Wang, R., Liu, W., McDonald, C. (2014, November). Corpus-independent Generic Keyphrase Extraction Using Word Embedding Vectors. In Software Engineering Research Conference (p. 39).
- Tixier, A. J. P., Malliaros, F. D., Vazirgiannis, M. A Graph Degeneracy-based Approach to Keyword Extraction.

A (1) > A (2) > A (2) >