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Context
Text is everywhere. For instance:
X search engines
X marketing and advertising
X social media (tweets, posts, blogs)
X virtual meetings (speech to text, chat)
X big proprietary databases (injury reports, insurance claims, customer

complaints...)

The Machine Learning tasks are numerous:
X summarization (e.g., keywords, paragraph, topics)
X classification (e.g., sentiment analysis)
X information retrieval (answer user queries)
X (sub)event/topic detection from text streams (e.g., natural

disaster, topic discussed...)
X link prediction (e.g., in citation networks)
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Limitations of Bag-of-Words

X traditional representation of text (with TF or TF-IDF weighting)
X assumes independence between terms
X does not capture term order (Mary is quicker than John = John is

quicker than Mary)

information retrieval is the activity of obtaining information resources
relevant to an information need from a collection of information resources

(activity,1), (collection,1), (information,4), (relevant,1), (resources,2)...
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Graph-of-Words: a novel approach for text mining
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Graph-of-Words

X captures term dependence
X encodes the strength of the dependence as edge weights
X captures term order (via directed edges)
X recently reached state-of-the-art on many NLP tasks:

- information retrieval [Rousseau and Vazirgiannis, 2013]
- document classification [Nikolentzos et al. 2016, Rousseau et al., 2015;
Malliaros and Skianis, 2015]
- single-document keyword extraction [Rousseau and Vazirgiannis,
2015]
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Graph degeneracy – concept of k-core

- a core of order k (or k-core) of a graph G is a maximal connected
subgraph of G in which every vertex v has at least degree k
[Seidman, 1983]

- the k-core decomposition of G is the list of all its cores from 0 (G
itself) to kmax (its main core)
⇒ hierarchy of levels of increasing cohesiveness

- linear (resp. linearithmic) time algorithm available for unweighted (resp.
weighted) edges [Batagelj and Zaveršnik, 2002]

- the core number of a node is the highest order of a core that contains
this node
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Illustration of k-core decomposition
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Main Core Retention on Graph-of-Words for Keyword
Extraction

⇒ simple idea: represent a document as a graph-of-words, degenerate
the graph, and then, retain the members of the main core of the graph as
the keywords

⇒ this approach extracts keywords based on their centrality but also
their cohesiveness in the graph-of-words
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Illustration of main core vs. PageRank

Keywords manually assigned by human annotators
linear algebra equat; numer system; m-dimension lambda matric

A method for solution of systems of linear algebraic equations with 
m-dimensional lambda matrices.
A system of linear algebraic equations with m-dimensional lambda ma-
trices is considered. The proposed method of searching for the solution 
of this system lies in reducing it to a numerical system of a special kind.

WK-core PageRank
system 6 system 1.93
matric 6 matric 1.27
lambda 6 solut 1.10
linear 6 lambda 1.08
equat 6 linear 1.08
algebra 6 equat 0.90
m-dim... 6 algebra 0.90
method 5 m-dim... 0.90
solut 5 propos 0.89
propos 4 method 0.88
numer 3 special 0.78
specia 2 numer 0.74
kind 2 kind 0.55
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Experiments: set-up

2 standard datasets:

I Hulth2003 – 500 abstracts from the Inspec database [Hulth, 2003]

I Krapi2009 – 2,304 ACM full papers in Computer Science (references
and captions excluded) [Krapivin et al., 2009]

Each document has a set of golden keywords assigned by humans
⇒ precision, recall and F1-score per document
⇒ macro-average each metric at the collection level
Comparisons:
I PageRank
I HITS (authority scores only)

}
top 33% or top 15 keywords

I K-core
I Weighted K-core

}
main core
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Experiments: results

Graph Dataset Macro-average F1-score (%)
PageRank HITS K-core WK-core

undirected
edges

Hulth2003 47.32 46.62 49.06* 51.92*
Krapi2009 49.59 47.96 46.61 50.77*

forward
edges

Hulth2003 45.70 45.03 51.65* 50.59*
Krapi2009 45.72 44.95 46.03 47.01*

backward
edges

Hulth2003 47.57 45.37 45.20 50.03*
Krapi2009 50.51 47.38 46.93 50.42

Table: Macro-average F1-score for PageRank, HITS, K-core and Weighted
K-core (WK-core). Bold font marks the best performance in a block of a row.
* indicates statistical significance at p < 0.05 using the Student’s t-test w.r.t.
the PageRank baseline of the same block of the same row.
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Conclusion

I extracting the main core captures a cohesive subgraph of vertices
that are not only central but also densely connected

I leads to better performance, in terms of F1 score but also
adaptability (number of keywords adapt to graph size, i.e.,
document size)
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Interactive web demo

https://safetyapp.shinyapps.io/GoWvis/

I graph-of-words interactive visualization
I many text preprocessing, graph building and graph mining tuning

parameters
I keyword extraction
I extractive summarization
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Thank you for your attention
Questions?
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